Development of a geochemical code to assess cement reactivity

Bruno Huet, Richard Fuller,
Jean Prevost, George Scherer
(Princeton University)
Collaborator: Jim Johnson (LLNL)

Introduction

Objective of our work:

Assess the reliability of the CO2 storage with time.

- 1. Reliability of geological formation limited by the presence of engineered high permeability path (well bores).
- 2. Degradation of casing materials (steel, cement) may increase the CO2 leak with time.

Coupled modeling and experimental approach

Modeling approach:

- 1. Aqueous chemistry
- 2. Transport processes

Sketch of a typical abandoned oil well

Possible CO₂ leaks along high-permeability path

Three main mechanisms (P, T dependent):

- 1. Multiphase transport within annulus: aqueous phase and CO₂ rich phase (supercritical/liquid/gas)
- 2. Reactivity of cement : CO2 brine (pH=3), cement pore solution (pH=13)
- 3. Interface behavior: coupling of 1. and 2.
 - → Need for a coupled geochemical transport model

Chemistry approach

Batch experiments simulation:

Flush of cement with CO2 saturated sea water.

✓ Cement = Portlandite + Jennite + Ettringite + Monosulfoaluminate

+ dissolved NaOH (0.25M)

 \checkmark Brine = NaCl (0.5 M), CO₂ (1 bar)

Reactive Transport of Ions in Cement-Based Porous Material [1]:

1. <u>Transport of aqueous species (for each ion):</u>

$$\frac{\partial(\theta c_{i})}{\partial t} = \theta D_{e,i} \frac{\partial^{2} c_{i}}{\partial x^{2}} \qquad i \in \{1, N_{sp}\} \qquad \text{I. Diffusion}$$

$$+ \theta D_{e,i} \left(\frac{\partial c_{i}}{\partial x} \frac{\partial \ln \gamma_{i}}{\partial x} + c_{i} \frac{\partial^{2} \ln \gamma_{i}}{\partial x^{2}} \right) \qquad \text{II. Electrical coupling}$$

$$+ \theta D_{e,i} \frac{z_{i} F}{RT} \left(\frac{\partial c_{i}}{\partial x} \frac{\partial \psi}{\partial x} + c_{i} \frac{\partial^{2} \psi}{\partial x^{2}} \right) \qquad \text{III. Activity correction}$$

$$+ \left(\frac{\partial c_{i}}{\partial x} + c_{i} \frac{\partial \ln \gamma_{i}}{\partial x} + c_{i} \frac{z_{i} F}{RT} \frac{\partial \psi}{\partial x} \right) \frac{\partial(\theta D_{e,i})}{\partial \theta} \frac{\partial \theta}{\partial x} \qquad \text{IV. Porosity correction}$$

2. <u>Local equilibrium:</u>

Heterogeneous reactions:

e.g.
$$Ca(OH)_2 \Leftrightarrow Ca^{2+} + 2OH^{-}$$

$$\sum_{j=1}^{N_c} v_{ij} \left(Log(\gamma_j) + Log(C_j^0 + \sum_{k=1}^{M} v_{jk} \Delta S_k) \right) + Log(K_{fi}) = 0 , i \in \{1, M\}$$

[1]: E. Samson and J. Marchand, Université Laval, Québec, Canada G1K 7P4

Reactive Transport of Ions in Cement-Based Porous Material:

1. Numerical method:

SNIA: Sequential Non Iterative Approach

2. Assumption:

- local thermodynamic equilibrium
- pure diffusion process

3. Choice of time step Δt and space step Δx for simulations:

• Critical time: Reaction
$$t_R = \frac{1}{(k_e S_a)}$$

Diffusion $t_D = \frac{L^2}{D}$

• time step
$$t_r \prec \Delta t \prec t_D$$

• space step
$$\Delta x > \sqrt{\frac{D_e}{k_e S_a}}$$

Cement chemical behavior in pure de-ionized water

Concentration profile (after 6 days):

Importance of various terms of the transport equation

Cement chemical behavior in pure de-ionized water

Mineral profile (after 6 days):

Input parameters: $D_e=10^{-11} \text{ m}^2/\text{s}$, $\phi=0.5$, $dx=10^{-4}\text{m}$, $dt=10^3\text{s}$, L=1cm

Mineral zoning:

- 1. Portlandite, Jennite, Aft. AFm
- 2. Jennite, Aft, AFm
- 3. Tobermorite, Aft

Cement chemical behavior in pure de-ionized water

Mineral profile (after 1 month):

Portlandite dissolved throughout the 1 cm cement sample after 1 month

<u>Key parameters:</u> microstructure (tortuosity, porosity) and buffer capacity (calcium content, hydrates reactivity)

Current and Future Work

- Integrating aqueous chemistry
- Temperature
- Improved description of C-S-H (logK = f (Ca/Si)
- Reaction Kinetics (needed for CSH with low Ca/Si ratio)

- ➤ 2D simulations of CO₂ multiphase transport up the wellbores:
 - 1. Modeling of segments of wellbores
 - 2. Modeling the dynamic behavior of defects (widening, self healing, cracks opening)